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Abstract. Some properties of non-Gaussian probability density functions applicable to coherent
light scattering experiments are investigated using random walk theory. The values taken by
these functions together with the slope of the distribution near the origin can be used to discern
the number of particles present, in particular when this number is small. The behaviour of
these functions in cases where there are fluctuations in the number of particles present and the
scattering cross sections indicate that the conclusions drawn are generic and not sensitive to the
details of the model. The technique may be applicable to subject areas other than the scattering
of coherent light.

1. Introduction

The concept of a random walk has proved to be of great utility and has been employed with
considerable success in diverse areas of mathematics, the physical and biological sciences
(see [1] and [2] for example). Rayleigh’s study of the statistical properties of sound [3] was
an early example of the use of a two-dimensional random walk giving an elegant physical
manifestation of the central limit theorem of statistics. His results gained new impetus
with the advent of the laser, where the interference of scattered coherent light leads to
‘speckle’. The real and imaginary parts of the complex scattered field each have Gaussian
distributions, so that the resultant amplitude has a Rayleigh distribution and the resultant
intensity is exponentially distributed. The epithet ‘Gaussian’ is used to describe a random
variable having any of these distributions. The random walk has subsequently been used in
optics to model the many instances of non-Gaussian statistics that can arise [4, 5].

Pearson [1] and Kluyver [6] studied the problem of random walks as the numberN of
identical length steps increased. The probability distributions of the resultant distance from
the origin were found and the approach to the Gaussian limit could thus be observed. For
N < 7 the distributions are manifestly non-Gaussian but, forN > 7, the appearance of
the intensity distribution is difficult to distinguish from the exponential limit distribution.
Nevertheless, by calculating the moments of the distributions, the departures from the
Gaussian limit can be quantified for an arbitrary number of steps. ForN = 10 the
second normalized intensity moment is 10% less than its Gaussian value of 2 and the
third normalized moment is some 8.5% in excess of its Gaussian value of 6.

Puseyet al [7] interpreted many of the results contained in [1] in the context of
coherent light scattered from a fixed number and from a fluctuating population of statistically
independent but identical scatterers. They demonstrated that for a large number of steps (or
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particles) the statistics of the scattered light were approximately Gaussian and that departures
from the Gaussian limit could be used to infer some properties of the individual steps. This
information could, in principle, be extracted from an analysis of the moments of the resultant
distribution rather than from the probability density function itself. The moments exhibit
enhanced values that are usually in excess of the Gaussian values when the step sizes vary
and whenN is small. The magnitude of this enhancement factor depend on the details of the
step-size distribution or, equivalently, the physical properties of the scatterers. A principal
difficulty of using second- and higher-order moments to make quantitative deductions stems
from the amount of data required to be certain of having reliable and unbiased estimates for
the statistics. Having reasonable estimates of the moments is equivalent to measuring the
entire probability density function accurately, especially those events occurring in the tail of
the distribution. Recording the frequency of these events can be prohibitive if the random
process under observation is significantly non-Gaussian in nature [8]. Another disadvantage
inherent in using the moments is that the information about the number fluctuations and the
scattering cross sections are difficult to decouple from one another. Although it is possible
to achieve this decoupling in some instances [9, 10], prior information about the nature of
the scatterers must first be assumed and the configuration for making the measurements
requires multiple sensor arrays.

In this paper the ideas first mooted in [7] are revisited but with different purview. It will
be shown that it is possible to extract information about the number of scatterers present or,
equivalently, the number of steps that have been taken in the random walk, by making in
principle just two measurements on the probability density function itself rather than from
the moments associated with it. Specifically the information sought is uniquely contained
in the enhanced values of the scattered intensity probability distribution function (pdf) and
its derivative at or near to the origin. The enhancement is most pronounced when the actual
number or effective number of scatters is low, precisely in those circumstances when the
pdf has pronounced non-Gaussian character.

Section 2 contains a brief review of the form of the probability density functions that
obtain from identical particles, or equivalently for random walks of fixed step length. The
principle that the number of steps can be gleaned fromP(0) is demonstrated for the case
of a fixed number of particles being present. This situation is then generalized in section 3
to the case when the number of particles is fluctuating according to a particular discrete
random process. The final generalization is made in section 4 where fluctuations in both
the number of steps and in the length of steps is discussed with a view to treating scattering
by non-identical but statistically similar particles. A discussion about possible experimental
constraints is given and the conclusions are drawn in the final section.

2. Distributions with fixed number of steps and step lengths

Consider a two-dimensional random walk comprisingN steps with each step being of fixed
length r. The direction of each successive step is independent from the previous one and
occurs in an entirely random direction. The resultant of such a walk may be written as

R exp(i8) =
N∑

j=1

r exp(iφj )

where the elemental phasesφj are uniformly distributed over 2π radians. The probability
distribution of the resultant phase8 is also uniformly distributed over 2π radians and it is
straightforward to show that the resultant amplitude afterN steps has probability distribution
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given by [1]

PN(R) = R

∫ ∞

0
uJ0(uR)(J0(ur))N du

whereJn(x) is a Bessel function of ordern. Using this, the pdf of the resultant intensity
I = R2 is easily found to be

PN(I) = 1

2

∫ ∞

0
uJ0

(
u
√

I
)

(J0(ur))N du (2.1)

which may be evaluated analytically for certain values ofN . When N = 1 the pdf is a
delta function atI = r2 because the step size is constant. Denoting the mean intensity as
〈I 〉 = Nr2 allows the pdf to be written in terms of the dimensionless variablex = I/〈I 〉,
whereupon the pdfs forN = 2, 3 may be shown to be

〈I 〉P2(I ) =


1

π(x(2 − x))1/2
for x < 2

0 otherwise
(2.2)

and

〈I 〉P3(I ) =



k

2π2(3x)1/4
K(k) if 0 < x < 1/3

1

2π2(3x)1/4
K(1/k) if 1/3 < x < 3

0 if x > 3

(2.3)

whereK(k) is a complete elliptic integral of the first kind [11] with modulus

k = 4

 √
3x(

3 − √
3x

) (
1 + √

3x
)3


1/2

.

The curves of these distributions are shown in figure 1(a) and it is clear that both are
singular and discontinuous.P2 is singular at the origin and whenx = 2, this being the
furthest possible extent from the origin after two steps, and for values ofx greater than 2
it is zero. P3 is finite at the origin, has a logarithmic singularity atx = 1/3 and a finite
jump discontinuity whenx = 3, after which it is zero. It is apparent that the distributions
for two or three particles are very different from the limiting exponential distribution, and
therefore the statistics of the scattered light would be significantly non-Gaussian.

The singularities and discontinuities inP2 and P3 may seem surprising at first, but it
should be realized that the integrated probability over a certain range is always finite. A
partial explanation of these discontinuities may be given by making a comparison with
random walks in one dimension. For a one-dimensional random walk comprising two
steps there are only two possible outcomes, the resultant is either zero or two step lengths,
each occurring with equal probability. In two dimensions the distribution is smoother but
there are still singularities corresponding to the delta functions in the one-dimensional case.
For three steps in a one-dimensional walk there are still only two possible outcomes: a
resultant of one-step length and three-step lengths occurring with probability 3/4 and 1/4
respectively. Once again these delta functions are smoothed out in two dimensions, there
being a singularity atx = 1/3 and a discontinuity atx = 3 marking the end of the range.
For walks having a higher number of steps, the combination of possible outcomes increases
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Figure 1. The pdf for random walks having unit step length and uniformly distributed phases
with (a) two and three steps and (b) four and five steps.

and so a detailed comparison between the features appearing in one- and two-dimensional
walks becomes increasingly difficult to interpret.

For larger values ofN the distribution (2.1) is readily calculated using a convergent
Fourier–Bessel series [12, 13]. This series is valid for 0< I < 〈I 〉 and is given by

〈I 〉PN(I) = 1

N

∞∑
m=1

J0(jmI 1/2/Nr)[J0(jm/N)]N/[J1(jm)]2 (2.4)

wherejm is themth positive zero of the Bessel functionJ0(x). Taking the first 400 terms
in this series is usually sufficient to obtain an accurate solution and figure 1(b) shows the
curves forP4 andP5. P4 is infinite at the origin and possesses discontinuities in slope at
x = 1 andx = 4. By contrastP5 is finite for all x but has discontinuities in its slope at
x = 1/5 andx = 5. Note that near the origin the slope ofP5 is positive, as was that forP3.
Figure 2 shows curves of the logarithm ofP6 andP7, these being distinguishable only for
larger values of the intensity. By way of comparison, the limiting exponential distribution
is also depicted. A striking feature in all of these graphs is the behaviour of the distribution
at or near the origin asN varies and it is this behaviour that will be exploited.
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Figure 2. The logarithm of the pdfs for six- and seven-step random walks having unit step
length and uniformly distributed phases together with the exponential limit distribution. The
difference between the curves is only evident for larger values of the intensity.

Figure 3. The normalized intensity at the origin as a function of the number of identical steps
in the walk forN ranging up to 20.

Figure 3 shows the values of the dimensionless quantityf = 〈I 〉PN(0) as a function
of N ranging through 1 to 20. ForN = 1, the value off is clearly zero. ForN = 2
and 4 the value off is infinite. The analytical result (2.3) has been used to calculatef

for N = 3, and equation (2.4) has been employed for all other values ofN up to 20. The
trend towards the Gaussian value of unity from below is evident for largeN , but f varies
greatly for smaller values ofN . It will be shown that this variability can, in principle, be
used to determine the value ofN , but first it is instructive to consider whether this result is
maintained when the number of steps in the walk fluctuates. This will be considered in the
next section.
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3. Distributions with varying number of steps and fixed step lengths

Calculating the pdf for the situation when the number of stepsN in the walk fluctuates
according to some random process requires a slight generalization to equation (2.1)
equivalent to performing an average over the number fluctuation distribution. Proceeding
in this way yields an averaged pdf, viz.

PN(I) = 1

2

∫ ∞

0
uJ0

(
u
√

I
)

Q(J0(ur)) du (3.1)

where Q(s) = ∑∞
N=0 sNp(N) is the probability generating function andp(N) is the

probability thatN steps have taken place.
If the number of steps is fluctuating according to a Poisson process [14], then (3.1) can

be written as

PN(I) = 1

2
exp(−N)

∫ ∞

0
uJ0

(
u
√

I
)

exp(NJ0(ur)) du. (3.2)

Evaluating (3.2) at the origin will always give an infinite result because of the singular
contributions fromP2 andP4. These singularities will be present irrespective of the value
taken forN and so to circumvent this, (3.2) is evaluated at a pointx slightly displaced from
the origin where the values of all the probabilities are finite. An arbitrary valuex = 1/100
is used throughout this section. To calculate the dimensionless quantityf = PN(x) requires
expansion of the exponential in the integrand of (3.2) after which the resultant pdf can be
found through employing the analytical results (2.2, 2.3), the Fourier–Bessel series (2.4)
and asymptotic formulae for large values ofN . The details for this procedure are contained
in the appendix. Figure 4 showsf andg plotted as functions ofN . For small values ofN
there is on average fewer than one particle present and so the pdf must, as it does, tend to
zero. For moderate values ofN there is a slight enhancement above unity, evidently caused
by an average over the distributions for two, four and six particles. For larger values of
N the curve approaches the Gaussian value of 1, but this time from above (cf figure 3).
If N is to be estimated from this curve an additional measure is required since for each
value off there may correspond two values ofN . A unique estimate forN can be found
by using the slope of the distribution near the origin (recall that for the case whenN was
fixed, the derivative could be positive or negative). Defining the dimensionless derivative
to beg = P ′

N
(x) enables the slope of the distribution near the origin to be determined in

a similar fashion to that forf , the results for which are shown in figure 4(b). For small
values ofN the slope of the distribution is small for the same reasons that the value off

is small. For larger values ofN , g is large and negative, this being due to the dominant
contributions from the two- and four-particle distributions. AsN increases,g approaches
the asymptotic Gaussian limit of−1.

Another model for number fluctuations known to be of importance in non-Gaussian
light scattering [15] is the negative binomial distribution for which

p(N) =
(

N + α − 1
N

)
(N/α)N

(1 + (N/α))N+α
for α > 0. (3.3)

This distribution can account for the clustering of particles for small values ofα and is
asymptotic to the Poisson distribution whenα is large. Using (3.3) in (3.1) enables both
f and g to be found as before and the results are displayed in figure 5 for the particular
choiceα = 2. Comparing these results with those given in figure 4 shows that the value
of f now increases substantially above unity and its asymptotic value is now not given by
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Figure 4. (a) The normalized intensity pdff near the origin(x = 1/100) as a function of the
number of identical steps in the walk forN fluctuating according to a Poisson random process.
The approach to the Gaussian asymptote of unity occurs for sufficiently large value ofN . (b)
The normalized derivative of the pdfg evaluated near the origin, at the same value ofx.

the Gaussian limit. This is because the largeN asymptotic limit for the negative binomial
distribution depends on the cluster parameter and may be summarized thus

p(x) =



α

α − 1
if α > 1

− ln(x) if α = 1

αα0(1 − α)xα−1

0(α)
if α < 1.

(3.4)

It would appear that the value of the probability density near the origin when used in
conjunction with its derivative can provide a gauge for the number of scattering centres
present or, equivalently, the number of steps in the random walk that have taken place. It is
pertinent to enquire whether these results are sensitive to the nature of the individual steps
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Figure 5. The functionsf and g for a random walk with identical steps having negative
binomial number fluctuations with cluster parameterα = 2. A value ofx = 1/100 is used for
both curves.

comprising the walk and to the distribution describing the number of steps. These questions
will be addressed in the following section.

4. Limiting forms of distributions for variable step lengths

The results of the last section indicate that the value of the pdf near the origin contains
information about the number of steps that have taken place in a two-dimensional random
walk where each of the steps is identical. The relaxation of this constraint to enable
consideration of the case when the step lengths are fluctuating is straightforward, requiring
only a slight generalization of equation (3.1). Provided that each of the steps is statistically
similar, the resultant pdf may be written as:

PN(I) = 1

2

∫ ∞

0
uJ0

(
u
√

I
)

Q(〈J0(ur)〉) du (4.1)
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where〈· · ·〉 denotes an ensemble average over the distribution for the step lengths.
A model for the distribution ofr which enables the calculations to be performed

analytically throughout but which is nevertheless relevant to numerous instances in non-
Gaussian scattering is theK-distribution [15–16], for which

p(r) = 2b

0(ν)

(
br

2

)ν

Kν−1(br) for ν > 0.

Inserting this into (4.1) gives

PN(I) = b2

20(Nν)

(
I 1/2b

2

)Nν−1

KNν−1(bI 1/2) (4.2)

being the pdf of the resultantI formed from a sum ofN K-distributed steps. This result
shows that the resultant intensity is alsoK-distributed but with a scaled index, illustrating
the stability properties [17] of this distribution. The value and physical interpretation of the
index appearing in theK-distribution is rather dependent upon the particular application
being studied. These issues are considered in [18, 19]. The mean of theK-distribution is
〈I 〉 = 4Nν/b2 and this may be used to form the dimensionless quantities

f = lim
l→0

〈I 〉PN(I)

g = lim
l→0

〈I 〉2 dPN(I)

dI
.

It is becauser is fluctuating that it is possible to proceed directly to the limit in this case
and evaluate the pdf and its slope at the origin. However, for certain values of the index
ν, the K-distribution is singular at the origin, in which casef and g must, as before, be
determined for some small value of intensity. These calculations are possible to perform
using the same technique used in section 3. The details add little to the argument and so it
is the idealized results off andg at the origin that will be discussed here. Provided then
that the scaled indexNν > 1, f is easily found with the aid of asymptotic formulae for
Bessel functions [11] to be

f = Nν

(Nν − 1)
(4.3)

and if Nν > 2, g can be found in a similar fashion:

g = −(Nν)2

(Nν − 1)(Nν − 2)
. (4.4)

The different conditions forf and g on the scaled index stem from the logarithmic
singularity of theK-distribution at the origin whenν = 1. These simple expressions exhibit
many of the salient features appearing in the analyses for fixed step length. Provided that
Nν > 1 the value off is finite and decreases to unity with increasingNν, whilst the value
of g in the same limit is−1. Both these results are symptomatic of the move towards
exponential intensity statistics as one would expect from the central limit theorem.

More interesting and significant still is the behaviour off and g when N is itself
fluctuating according to some random process. The type of number fluctuations that yield
to an analytical approach include those described by binomial, Poisson and negative binomial
distributions, the last two of which have already been analysed. Taken as a group these three
are important because they span the range for which the normalized variance is respectively
less-than, equal to and in excess of the mean. Taken in combination therefore, the results
obtained using these models will be indicative of any instance when number fluctuations
occur.
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When N fluctuates according to a Poisson process, the resultant pdf at the origin is
readily found from (4.1) and (4.3) to be

PN(0) = b2 exp(−N)

4ν

∞∑
n=1

N
n

n!(n − 1/ν)
.

The contribution forn = 0 is omitted since it corresponds to no particles being present.
This series may be summed in terms of tabulated functions to give

f = Nν exp(−N)
(

1 − π

ν
cosec

(π

ν

)
L

1/ν

−1/ν(N)
)

whereLa
b(x) is the Laguerre function [11]. Figure 6 showsf plotted as a function ofN

for different values of the indexν. WhenN is less than unity there are on average very
few particles present and so the value of the pdf at the origin must, as it does, fall to zero.
For values ofN in the range 1–10f peaks before declining to the Gaussian value of 1
whenN is large. The value of the peak, and to a lesser extent its location, depends on the
index of theK-distribution but is typically in excess of 1.5 for those values ofν shown. If
f . 1 then one may categorically state that there are fewer than three particles present on
average. ForN & 4f is double valued and so an additional measure is required to obtain
a unique estimate forN , this being the derivativeg.

The dimensionless derivative can be found in a similar fashion to be:

g = −1

4
N

2
exp(−N)

{
ν cosec

(π

ν

)
sec

(π

ν

) [
4π cos

(π

ν

)
L

1/ν

−1/ν(N) − 2πL
2/ν

−2/ν(N)

−ν sin

(
2π

ν

)]}
.

Figure 6(b) showsg in the same range for different values of the indexν. The correct
asymptotes of zero and−1 are obtained for small and large values ofN respectively, with
significant deviations from these asymptotes whenN is of order unity.

Similar behaviour is obtained when negative binomial and binomial number fluctuations
are considered. The relevant sums for negative binomial number fluctuations are:

f = Nν

(1 + N/α)α

∞∑
N=1

(
N + α − 1

N

) (
N

α + N

)N 1

(Nν − 1)

g = −N
2
ν2

(1 + N/α)α

∞∑
N=1

(
N + α − 1

N

) (
N

α + N

)N 1

(Nν − 1)(Nν − 2)

where α is the cluster parameter. Again, these may be summed in terms of tabulated
functions to give

f = νN

(1 + N/α)α

{
1 − 2F1

(
α,

−1

ν
, 1 − 1

ν
,

N

(N + α)

)}

g= −ν2N
2

2(1 + N/α)α

{
2 2F1

(
α,

−1

ν
, 1 − 1

ν
,

N

(N + α)

)
− 2F1

(
α,

−2

ν
, 1 − 2

ν
,

N

(N + α)

)
−1

}
where2F1 is Gauss’ hypergeometric function [20]. A set of curves are shown forf andg

as functions ofN for various values of theK-distribution indexν and cluster parameter.
Figure 7 showsf andg for α = 3, 5 and 10. The generic form of the curves is similar to
that shown for the Poisson fluctuations, but the cluster parameter now plays an important
role, leading to a significant enhancement in the peak values off and g. Moreover the
asymptotic limits are no longer given by the Gaussian values, but depend on the cluster
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Figure 6. (a) The functionf for Poisson number fluctuations for a random walk with fluctuating
step lengths. The indexν of the K-distribution that governs the step-size distribution produces
the different curves. (b) The functiong for Poisson number fluctuations for a random walk with
fluctuating step lengths for different values ofν.

parameter. Note that these limits are not attained untilN is surprisingly large, illustrating
the importance of the clustering mechanism. Specifically the asymptotic limits are easily
shown to be

lim
N→∞

f = α

α − 1

lim
N→∞

g = −α2

(α − 1)(α − 2)
.

These tend to the Gaussian values whenα → ∞, as they should, for in this limit the
negative binomial distribution is asymptotic to the Poisson distribution whose results have
already been discussed.

The last class of number fluctuation to consider is binomial. In this case the relevant
sums become:

f = νN(1 − p)N/p

N/p∑
N=1

(
N/p

N

) (
p

1 − p

)N 1

Nν − 1

g = −(νN)2(1 − p)N/p

N/p∑
N=1

(
N/p

N

) (
p

1 − p

)N 1

(Nν − 1)(Nν − 2)
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Figure 7. The functionsf andg for negative binomial number fluctuations withα = 3, 5 and
10. The curves forα = 10 are similar to those shown for Poisson fluctuations. For smaller
values ofα, the absolute maximum values of the functions increase and the curves broaden.
The asymptotic limit is no longer the Gaussian one for large values ofN .
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Figure 7. (Continued)

wherep < 1 is the probability that a group ofN particles is present. For the purposes of
tabulation these sums may be written as

f = νN(1 − p)N/p

(
1 − 2F1

(
−N

p
,
−1

ν
, 1 − 1

ν
,

−p

1 − p

))
g = −1

2
(νN)2(1 − p)N/p

(
2 2F1

(
−N

p
,
−1

ν
, 1 − 1

ν
,

−p

1 − p

)
− 2F1

(
−N

p
,
−2

ν
, 1 − 2

ν
,

−p

1 − p

)
− 1

)
.

Figure 8 showsf andg for two values forp. Whenp is small the binomial distribution
may be approximated by the Poisson distribution and so the results displayed in figure 6
are recovered. For increasing values ofp the general form of the curves is as before with
the position of the peak occurring forN of order unity. Note that for larger values ofp

the peak value off is progressively less than is the case for Poisson number fluctuations,
but the position of the peak occurs at systematically smaller values ofN . This observation
is to be expected becausep = 1 corresponds to the case in which the binomial distribution
becomes deterministic. Hence the curves for fixedN that are analogous to those depicted
in figure 3 are recovered. The curves will not be identical because the step lengths were
taken to be fixed for the case depicted in figure 3. This therefore serves to illustrate the
point that fluctuations in the step size serve to enhance the value ofP(0) and its slope at
the origin. A reason for this enhancement is that the fluctuations in step size reduce the
effectivenumber of contributions to the resultant of the random walk and whenN is small
the values the pdfs take at the origin have been shown to deviate significantly from the
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Gaussian value.
The emergent pattern of behaviour shown by these curves is characterized by the

variance of the number fluctuations. For distributions whose variance is less than the
mean, the curve forf has a broader peak for smaller values ofN but the peak value is less
than the Poissonian one. The results are asymptotic to the Gaussian limit for large values of
N . For number fluctuations whose normalized variance are in excess of the mean, the curve
for f is broader for larger values ofN and the peak value is substantially greater than the
corresponding Poisson result. The curves are generally not asymptotic with the Gaussian
limit. In general, all the curves exhibit a significant departure from the Gaussian values
whenN is less than∼ 10. The overall behaviour is not that dissimilar from the results for
fixed step lengths, which showed a very slight enhancement above the Gaussian values at
moderateN . The variability of the step lengths amplifies this effect without substantially
altering the overall morphology of the curves and is therefore likely to be a robust feature
of any system where the step lengths fluctuate, irrespective of their governing distribution.

5. Discussion

This paper has examined some of the properties of non-Gaussian pdfs that can arise in
coherent optical scattering. These pdfs were obtained using elements of the theory of
random walks in the plane. It has been shown that their form near the origin allows the
number of steps in the walk, or equivalently the number of scatterers or coherency volumes,
to be determined. The results that have been shown would appear to be generic and do
not depend, except in detail, on the fluctuating nature of the number or length of the steps
comprising the walk.

Insofar as these results are interpreted or used in the context of the scattering of coherent
radiation, the measurement of the pdf and its slope at or near to the origin by a real detector
would necessarily require a degree of integration by the instrument. This will naturally
involve a further averaging of the distributions, leading to an additional smoothing of the
curves. It should be stressed, however, that the curves have been produced as the result
of two separate averaging processes and, as has already been mentioned, their form is
comparatively insensitive to the details of this process. It may be expected therefore that
the curves will retain their structure, altering only in the magnitude of the effect.

The use of low-intensity light sources or weak scatterers necessitate the use of photon-
counting techniques which again introduces an averaging process. Photon-counting causes
additional fluctuations to occur, for there is a finite probability of measuring no photons
even from a source of constant intensity. The photocount probability distributionP(n) for
detectingn photons can be obtained from the Mandel relationship [21] and depends on the
efficiencyη of the detector and the sample timet :

PN(n) = (ηt)n

n!

∫ ∞

0
I nPN(I) exp(−ηtI ) dI.

The analogous measure would be to determinePN(0), or for n small, as a function of the
expected number of scatterersN that are present. This quantity is related to the characteristic
function of the intensity pdf and so may always be calculated. For theK-distribution model
discussed in section 4, the photocount distribution has the advantage that it can be found
exactly in terms of tabulated Whittaker functions [16]:

PN(n) =
(

Q

n

)N(ν+1)/2
0(Q + n)

0(Q)
exp

(
Q

2n

)
W−(Q/2+n),(Q−1)/2

(
Q

n

)
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Figure 8. The functionsf andg for binomial number fluctuations withp = 0.75 and 0.5 being
the probability thatN particles are present. The absolute maximum value of the curves and the
breadth of the peak both increase with decreasing certainty that the particles are present. The
asymptotic limit is once again the Gaussian one for large values ofN .
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wheren̄ = 4ηtN(1 + ν)/b2 is the mean number of photocounts, this being proportional to
the sample time, andQ = N(ν + 1). The photocount density function is likely to be more
sensitive to the details of the distributions used for the random walk and these matters will
be considered elsewhere.

The work described in this paper may be of consequence to any coherent optical
detection system working at or near to the diffraction limit for focused light in those
circumstances when a measure for the number of scattering objects is required. These
instances may range from low concentrations of contaminant in solution to unresolved
clusters of objects. The work may also find an application to areas other than light scattering,
such as low-dimensional systems in solid state physics and in population dynamics, where
the concept of the random walk has proved to be of value.

This work can be generalized to consider random walks in three or more dimensions with
comparative ease. It is well known that the continuum limit of a random walk is equivalent
to obtaining a solution to the diffusion equation. The introduction of clustering in the number
of steps and variability in the step lengths modifies the equivalent diffusion process. Such
a mechanism may find an application to modelling impurities in semiconductors among
others.
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Appendix

The method by which the curves appearing in section 3 are obtained warrants some
discussion. They are formed using the analytical results (2.2, 2.3), the Fourier–Bessel series
(2.4) and an asymptotic expansion of (2.1) that is employed for sufficiently large values
of N . This latter expansion is readily found from an expansion of the Bessel function
appearing in the integrand of (2.1) viz.

PN(I) = 1

2

∫ ∞

0
uJ0

(
u
√

I
)

exp(−(ur)2N/4)

(
1 − 3N(ur)4

64

)
+ · · · du

whereupon integrating term by term yields the result

PN(I) = 1

〈I 〉 exp(−I/〈I 〉)
(

1 − 3

2N

((
I

〈I 〉 − 2

)2

− 2

)
+ O

(
1

N2

)
+ · · ·

)
(A1)

where〈I 〉 = Nr2. This pdf may be used as it stands whenN is fixed, but must be averaged
over the appropriate distributionp(N) whenN is fluctuating. This requires evaluating

PN(I) =
∞∑

n=1

p(N)PN(I). (A2)

In this sum exact values ofPN(I) are used forN = 2, 3 (from equations (2.2) and (2.3)),
the Bessel expansions (from (3.4)) forN = 4–100 and (A1) forN > 100. In order to use
(A1), sums having the form:

∞∑
N=1

p(N)

Nk
k = 1, 2, . . . (A3)
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must be determined, the details for which depend upon the particular distribution being
considered. For Poisson number fluctuations the sum is expressible in terms of generalized
hypergeometric functions [15]:

exp(−N)

∞∑
N=1

N
N

N !Nk
= N exp(−N) k+1Fk+1

( 1, . . . 1;
N

2, . . . 2,

)
.

Following this procedurePN(I) can be found to any desired accuracy. However, since
values near the origin are required, the first few terms are sufficient.

If the number fluctuations follow a negative binomial distribution, the sums (A3)
appearing in the average are also expressible in terms of the hypergeometric functions
giving
∞∑

N=1

(
N + α − 1

N

)
(N/α)N

Nk(1 + (N/α))N+α

= α

(
α

α + N

)α (
N

α + N

)
(k+2)F(k+1)

( 1, . . . , 1, α + 1;
N

α+N
2, . . . , 2

)
.
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